Deep Model Reference Adaptive Control

09/18/2019
by   Girish Joshi, et al.
0

We present a new neuroadaptive architecture: Deep Neural Network based Model Reference Adaptive Control (DMRAC). Our architecture utilizes the power of deep neural network representations for modeling significant nonlinearities while marrying it with the boundedness guarantees that characterize MRAC based controllers. We demonstrate through simulations and analysis that DMRAC can subsume previously studied learning based MRAC methods, such as concurrent learning and GP-MRAC. This makes DMRAC a highly powerful architecture for high-performance control of nonlinear systems with long-term learning properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset