Deep Multimodal Learning: Merging Sensory Data for Massive MIMO Channel Prediction

07/18/2020
by   Yuwen Yang, et al.
0

Existing work in intelligent communications has recently made preliminary attempts to utilize multi-source sensing information (MSI) to improve the system performance. However, the research on MSI aided intelligent communications has not yet explored how to integrate and fuse the multimodal sensory data, which motivates us to develop a systematic framework for wireless communications based on deep multimodal learning (DML). In this paper, we first present complete descriptions and heuristic understandings on the framework of DML based wireless communications, where core design choices are analyzed in the view of communications. Then, we develop several DML based architectures for channel prediction in massive multiple-input multiple-output (MIMO) systems that leverage various modality combinations and fusion levels. The case study of massive MIMO channel prediction offers an important example that can be followed in developing other DML based communication technologies. Simulations results demonstrate that the proposed DML framework can effectively exploit the constructive and complementary information of multimodal sensory data in various wireless communication scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset