Deep Neural Matching Models for Graph Retrieval
Graph Retrieval has witnessed continued interest and progress in the past few years. In thisreport, we focus on neural network based approaches for Graph matching and retrieving similargraphs from a corpus of graphs. We explore methods which can soft predict the similaritybetween two graphs. Later, we gauge the power of a particular baseline (Shortest Path Kernel)and try to model it in our product graph random walks setting while making it more generalised.
READ FULL TEXT