Deep Neural Network Approximation of Composition Functions: with application to PINNs

04/17/2023
by   Chenguang Duan, et al.
0

In this paper, we focus on approximating a natural class of functions that are compositions of smooth functions. Unlike the low-dimensional support assumption on the covariate, we demonstrate that composition functions have an intrinsic sparse structure if we assume each layer in the composition has a small degree of freedom. This fact can alleviate the curse of dimensionality in approximation errors by neural networks. Specifically, by using mathematical induction and the multivariate Faa di Bruno formula, we extend the approximation theory of deep neural networks to the composition functions case. Furthermore, combining recent results on the statistical error of deep learning, we provide a general convergence rate analysis for the PINNs method in solving elliptic equations with compositional solutions. We also present two simple illustrative numerical examples to demonstrate the effect of the intrinsic sparse structure in regression and solving PDEs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset