Deep-Plant: Plant Identification with convolutional neural networks

06/28/2015
by   Sue Han Lee, et al.
0

This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset