Deep Reinforcement Learning-Based Control for Stomach Coverage Scanning of Wireless Capsule Endoscopy

05/18/2023
by   Yameng Zhang, et al.
0

Due to its non-invasive and painless characteristics, wireless capsule endoscopy has become the new gold standard for assessing gastrointestinal disorders. Omissions, however, could occur throughout the examination since controlling capsule endoscope can be challenging. In this work, we control the magnetic capsule endoscope for the coverage scanning task in the stomach based on reinforcement learning so that the capsule can comprehensively scan every corner of the stomach. We apply a well-made virtual platform named VR-Caps to simulate the process of stomach coverage scanning with a capsule endoscope model. We utilize and compare two deep reinforcement learning algorithms, the Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) algorithms, to train the permanent magnetic agent, which actuates the capsule endoscope directly via magnetic fields and then optimizes the scanning efficiency of stomach coverage. We analyze the pros and cons of the two algorithms with different hyperparameters and achieve a coverage rate of 98.04 area within 150.37 seconds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset