Deep Reinforcement Learning-based Multi-objective Path Planning on the Off-road Terrain Environment for Ground Vehicles
Due to the energy-consumption efficiency between up-slope and down-slope is hugely different, a path with the shortest length on a complex off-road terrain environment (2.5D map) is not always the path with the least energy consumption. For any energy-sensitive vehicles, realizing a good trade-off between distance and energy consumption on 2.5D path planning is significantly meaningful. In this paper, a deep reinforcement learning-based 2.5D multi-objective path planning method (DMOP) is proposed. The DMOP can efficiently find the desired path with three steps: (1) Transform the high-resolution 2.5D map into a small-size map. (2) Use a trained deep Q network (DQN) to find the desired path on the small-size map. (3) Build the planned path to the original high-resolution map using a path enhanced method. In addition, the imitation learning method and reward shaping theory are applied to train the DQN. The reward function is constructed with the information of terrain, distance, border. Simulation shows that the proposed method can finish the multi-objective 2.5D path planning task. Also, simulation proves that the method has powerful reasoning capability that enables it to perform arbitrary untrained planning tasks on the same map.
READ FULL TEXT