Deep Reinforcement Learning for Distributed Dynamic Coordinated Beamforming in Massive MIMO Cellular Networks

03/24/2023
by   Jungang Ge, et al.
0

To accommodate the explosive wireless traffics, massive multiple-input multiple-output (MIMO) is regarded as one of the key enabling technologies for next-generation communication systems. In massive MIMO cellular networks, coordinated beamforming (CBF), which jointly designs the beamformers of multiple base stations (BSs), is an efficient method to enhance the network performance. In this paper, we investigate the sum rate maximization problem in a massive MIMO mobile cellular network, where in each cell a multi-antenna BS serves multiple mobile users simultaneously via downlink beamforming. Although existing optimization-based CBF algorithms can provide near-optimal solutions, they require realtime and global channel state information (CSI), in addition to their high computation complexity. It is almost impossible to apply them in practical wireless networks, especially highly dynamic mobile cellular networks. Motivated by this, we propose a deep reinforcement learning based distributed dynamic coordinated beamforming (DDCBF) framework, which enables each BS to determine the beamformers with only local CSI and some historical information from other BSs.Besides, the beamformers can be calculated with a considerably lower computational complexity by exploiting neural networks and expert knowledge, i.e., a solution structure observed from the iterative procedure of the weighted minimum mean square error (WMMSE) algorithm. Moreover, we provide extensive numerical simulations to validate the effectiveness of the proposed DRL-based approach. With lower computational complexity and less required information, the results show that the proposed approach can achieve comparable performance to the centralized iterative optimization algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset