Deepchecks: A Library for Testing and Validating Machine Learning Models and Data

03/16/2022
by   Shir Chorev, et al.
0

This paper presents Deepchecks, a Python library for comprehensively validating machine learning models and data. Our goal is to provide an easy-to-use library comprising of many checks related to various types of issues, such as model predictive performance, data integrity, data distribution mismatches, and more. The package is distributed under the GNU Affero General Public License (AGPL) and relies on core libraries from the scientific Python ecosystem: scikit-learn, PyTorch, NumPy, pandas, and SciPy. Source code, documentation, examples, and an extensive user guide can be found at <https://github.com/deepchecks/deepchecks> and <https://docs.deepchecks.com/>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset