DeepNVM++: Cross-Layer Modeling and Optimization Framework of Non-Volatile Memories for Deep Learning
Non-volatile memory (NVM) technologies such as spin-transfer torque magnetic random access memory (STT-MRAM) and spin-orbit torque magnetic random access memory (SOT-MRAM) have significant advantages compared to conventional SRAM due to their non-volatility, higher cell density, and scalability features. While previous work has investigated several architectural implications of NVM for generic applications, in this work we present DeepNVM++, a framework to characterize, model, and analyze NVM-based caches in GPU architectures for deep learning (DL) applications by combining technology-specific circuit-level models and the actual memory behavior of various DL workloads. We present both iso-capacity and iso-area performance and energy analysis for systems whose last-level caches rely on conventional SRAM and emerging STT-MRAM and SOT-MRAM technologies. In the iso-capacity case, STT-MRAM and SOT-MRAM provide up to 3.8x and 4.7x energy-delay product (EDP) reduction and 2.4x and 2.8x area reduction compared to conventional SRAM, respectively. Under iso-area assumptions, STT-MRAM and SOT-MRAM provide up to 2x and 2.3x EDP reduction and accommodate 2.3x and 3.3x cache capacity when compared to SRAM, respectively. We also perform a scalability analysis and show that STT-MRAM and SOT-MRAM achieve orders of magnitude EDP reduction when compared to SRAM for large cache capacities. Our comprehensive cross-layer framework is demonstrated on STT-/SOT-MRAM technologies and can be used for the characterization, modeling, and analysis of any NVM technology for last-level caches in GPUs for DL applications.
READ FULL TEXT