DeepPlastic: A Novel Approach to Detecting Epipelagic Bound Plastic Using Deep Visual Models

05/05/2021
by   Gautam Tata, et al.
10

The quantification of positively buoyant marine plastic debris is critical to understanding how concentrations of trash from across the world's ocean and identifying high concentration garbage hotspots in dire need of trash removal. Currently, the most common monitoring method to quantify floating plastic requires the use of a manta trawl. Techniques requiring manta trawls (or similar surface collection devices) utilize physical removal of marine plastic debris as the first step and then analyze collected samples as a second step. The need for physical removal before analysis incurs high costs and requires intensive labor preventing scalable deployment of a real-time marine plastic monitoring service across the entirety of Earth's ocean bodies. Without better monitoring and sampling methods, the total impact of plastic pollution on the environment as a whole, and details of impact within specific oceanic regions, will remain unknown. This study presents a highly scalable workflow that utilizes images captured within the epipelagic layer of the ocean as an input. It produces real-time quantification of marine plastic debris for accurate quantification and physical removal. The workflow includes creating and preprocessing a domain-specific dataset, building an object detection model utilizing a deep neural network, and evaluating the model's performance. YOLOv5-S was the best performing model, which operates at a Mean Average Precision (mAP) of 0.851 and an F1-Score of 0.89 while maintaining near-real-time speed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset