DeepQoE: A unified Framework for Learning to Predict Video QoE
Motivated by the prowess of deep learning (DL) based techniques in prediction, generalization, and representation learning, we develop a novel framework called DeepQoE to predict video quality of experience (QoE). The end-to-end framework first uses a combination of DL techniques (e.g., word embeddings) to extract generalized features. Next, these features are combined and fed into a neural network for representation learning. Such representations serve as inputs for classification or regression tasks. Evaluating the performance of DeepQoE with two datasets, we show that for the small dataset, the accuracy of all shallow learning algorithm is improved by using the representation derived from DeepQoE. For the large dataset, our DeepQoE framework achieves significant performance improvement in comparison to the best baseline method (90.94 an open source tool, provides video QoE research much-needed flexibility in fitting different datasets, extracting generalized features, and learning representations.
READ FULL TEXT