Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training

07/24/2019
by   Haichao Zhang, et al.
0

We introduce a feature scattering-based adversarial training approach for improving model robustness against adversarial attacks. Conventional adversarial training approaches leverage a supervised scheme (either targeted or non-targeted) in generating attacks for training, which typically suffer from issues such as label leaking as noted in recent works. Differently, the proposed approach generates adversarial images for training through feature scattering in the latent space, which is unsupervised in nature and avoids label leaking. More importantly, this new approach generates perturbed images in a collaborative fashion, taking the inter-sample relationships into consideration. We conduct analysis on model robustness and demonstrate the effectiveness of the proposed approach through extensively experiments on different datasets compared with state-of-the-art approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset