Density Sketches for Sampling and Estimation
We introduce Density sketches (DS): a succinct online summary of the data distribution. DS can accurately estimate point wise probability density. Interestingly, DS also provides a capability to sample unseen novel data from the underlying data distribution. Thus, analogous to popular generative models, DS allows us to succinctly replace the real-data in almost all machine learning pipelines with synthetic examples drawn from the same distribution as the original data. However, unlike generative models, which do not have any statistical guarantees, DS leads to theoretically sound asymptotically converging consistent estimators of the underlying density function. Density sketches also have many appealing properties making them ideal for large-scale distributed applications. DS construction is an online algorithm. The sketches are additive, i.e., the sum of two sketches is the sketch of the combined data. These properties allow data to be collected from distributed sources, compressed into a density sketch, efficiently transmitted in the sketch form to a central server, merged, and re-sampled into a synthetic database for modeling applications. Thus, density sketches can potentially revolutionize how we store, communicate, and distribute data.
READ FULL TEXT