Dependency Tasks Offloading and Communication Resource Allocation in Collaborative UAVs Networks: A Meta-Heuristic Approach
In recent years, unmanned aerial vehicles (UAVs) assisted mobile edge computing systems have been exploited by researchers as a promising solution for providing computation services to mobile users outside of terrestrial infrastructure coverage. However, it remains challenging for the standalone MEC-enabled UAVs in order to meet the computation requirement of numerous mobile users due to the limited computation capacity of their onboard servers and battery lives. Therefore, we propose a collaborative scheme among UAVs so that UAVs can share the workload with idle UAVs. Moreover, current task offloading strategies frequently overlook task topology, which may result in poor performance or even system failure. To address the problem, we consider offloading tasks consisting of a set of sub-tasks, and each sub-task has dependencies on other sub-tasks, which is practical in the real world. Sub-tasks with dependencies need to wait for the resulting signal from preceding sub-tasks before being executed. This mechanism has serious effects on the offloading strategy. Then, we formulate an optimization problem to minimize the average latency experienced by users by jointly controlling the offloading decision for dependent tasks and allocating the communication resources of UAVs. The formulated problem appears to be NP-hard and cannot be solved in polynomial time. Therefore, we divide the problem into two sub-problems: the offloading decision problem and the communication resource allocation problem. Then a meta-heuristic method is proposed to find the sub-optimal solution of the task offloading problem, while the communication resource allocation problem is solved by using convex optimization. Finally, we perform substantial simulation experiments, and the result shows that the proposed offloading technique effectively minimizes the average latency of users, compared with other benchmark schemes.
READ FULL TEXT