Design-Informed Generative Modelling using Structural Optimization
Although various structural optimization techniques have a sound mathematical basis, the practical constructability of optimal designs poses a great challenge in the manufacturing stage. Currently, there is only a limited number of unified frameworks which output ready-to-manufacture parametric Computer-Aided Designs (CAD) of the optimal designs. From a generative design perspective, it is essential to have a single platform that outputs a structurally optimized CAD model because CAD models are an integral part of most industrial product development and manufacturing stages. This study focuses on developing a novel unified workflow handling topology, layout and size optimization in a single parametric platform, which subsequently outputs a ready-to-manufacture CAD model. All such outputs are checked and validated for structural requirements; strength, stiffness and stability in accordance with standard codes of practice. In the proposed method, first, topology-optimal model is generated and converted to a one-pixel-wide chain model using skeletonization. Secondly, a spatial frame is extracted from the skeleton for its member size and layout optimization. Finally, the CAD model is generated using constructive solid geometry trees and the structural integrity of each member is assessed to ensure structural robustness prior to manufacturing. Various examples presented in the paper showcase the validity of the proposed method across various engineering disciplines.
READ FULL TEXT