Design of non-diagonal stiffness matrix for assembly task

10/29/2022
by   Tsukasa Kusakabe, et al.
0

Compliance control is an increasingly employed technique used in the robotic field. It is known that various mechanical properties can be reproduced depending on the design of the stiffness matrix, but the design theory that takes advantage of this high degree of design freedom has not been elucidated. This paper, therefore, discusses the non-diagonal elements of the stiffness matrix. We proposed a design method according to the conditions required for achieving stable motion. Additionally, we analyzed the displacement induced by the non-diagonal elements in response to an external force and found that to obtain stable contact with a symmetric matrix, the matrix should be positive definite, i.e., all eigenvalues must be positive, however its parameter design is complicated. In this study, we focused on the use of asymmetric matrices in compliance control and showed that the design of eigenvalues can be simplified by using a triangular matrix. This approach expands the range of the stiffness design and enhances the ability of the compliance control to induce motion. We conducted experiments using the stiffness matrix and confirmed that assembly could be achieved without complicated trajectory planning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset