Detecting Engagement in Egocentric Video
In a wearable camera video, we see what the camera wearer sees. While this makes it easy to know roughly what he chose to look at, it does not immediately reveal when he was engaged with the environment. Specifically, at what moments did his focus linger, as he paused to gather more information about something he saw? Knowing this answer would benefit various applications in video summarization and augmented reality, yet prior work focuses solely on the "what" question (estimating saliency, gaze) without considering the "when" (engagement). We propose a learning-based approach that uses long-term egomotion cues to detect engagement, specifically in browsing scenarios where one frequently takes in new visual information (e.g., shopping, touring). We introduce a large, richly annotated dataset for ego-engagement that is the first of its kind. Our approach outperforms a wide array of existing methods. We show engagement can be detected well independent of both scene appearance and the camera wearer's identity.
READ FULL TEXT