Detecting inner-LAN anomalies using hierarchical forecasting

04/27/2023
by   Sevvandi Kandanaarachchi, et al.
0

Increasing activity and the number of devices online are leading to increasing and more diverse cyber attacks. This continuously evolving attack activity makes signature-based detection methods ineffective. Once malware has infiltrated into a LAN, bypassing an external gateway or entering via an unsecured mobile device, it can potentially infect all nodes in the LAN as well as carry out nefarious activities such as stealing valuable data, leading to financial damage and loss of reputation. Such infiltration could be viewed as an insider attack, increasing the need for LAN monitoring and security. In this paper we aim to detect such inner-LAN activity by studying the variations in Address Resolution Protocol (ARP) calls within the LAN. We find anomalous nodes by modelling inner-LAN traffic using hierarchical forecasting methods. We substantially reduce the false positives ever present in anomaly detection, by using an extreme value theory based method. We use a dataset from a real inner-LAN monitoring project, containing over 10M ARP calls from 362 nodes. Furthermore, the small number of false positives generated using our methods, is a potential solution to the "alert fatigue" commonly reported by security experts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset