Detecting Zero-day Controller Hijacking Attacks on the Power-Grid with Enhanced Deep Learning

06/18/2018
by   Zecheng He, et al.
0

Attacks against the control processor of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the attacks can prevent further damage. However, detecting zero-day attacks can be challenging because they have no known code and have unknown behavior. In order to address the zero-day attack problem, we propose a data-driven defense by training a temporal deep learning model, using only normal data from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we can quickly find malicious codes running on the processor, by estimating deviations from the normal behavior with a statistical test. Experimental results on a real power-grid controller show that we can detect anomalous behavior with over 99.9

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset