Detection of Epilepsy Seizure using Different Dimensionality Reduction Techniques and Machine Learning on Transform Domain

02/17/2023
by   Rabel Guharoy, et al.
0

An Electroencephalogram (EEG) is a non-invasive exam that records the electrical activity of the brain. This exam is used to help diagnose conditions such as different brain problems. EEG signals are taken for the purpose of epilepsy detection and with Discrete Wavelet Transform (DWT) and machine learning classifier, they perform epilepsy detection. In Epilepsy seizure detection, mainly machine learning classifiers and statistical features are used. The hidden information in the EEG signal is useful for detecting diseases affecting the brain. Sometimes it is very difficult to identify the minimum changes in the EEG in time and frequency domains purpose. The DWT can give a good decomposition of the signals in different frequency bands and feature extraction. We use the tri-dimensionality reduction algorithm.; Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis (LDA). Finally, features are selected by using a fusion rule and at the last step three different classifiers Support Vector Machine (SVM), Naive Bayes (NB) and K-Nearest-Neighbor (KNN) has been used for the classification. The proposed framework is tested on the Bonn dataset and the simulation results provide the maximum accuracy for the combination of LDA and NB for 10-fold cross validation technique. It shows the maximum average sensitivity, specificity, accuracy, Precision and Recall of 100 100

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset