DeViT: Deformed Vision Transformers in Video Inpainting

09/28/2022
by   Jiayin Cai, et al.
13

This paper proposes a novel video inpainting method. We make three main contributions: First, we extended previous Transformers with patch alignment by introducing Deformed Patch-based Homography (DePtH), which improves patch-level feature alignments without additional supervision and benefits challenging scenes with various deformation. Second, we introduce Mask Pruning-based Patch Attention (MPPA) to improve patch-wised feature matching by pruning out less essential features and using saliency map. MPPA enhances matching accuracy between warped tokens with invalid pixels. Third, we introduce a Spatial-Temporal weighting Adaptor (STA) module to obtain accurate attention to spatial-temporal tokens under the guidance of the Deformation Factor learned from DePtH, especially for videos with agile motions. Experimental results demonstrate that our method outperforms recent methods qualitatively and quantitatively and achieves a new state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset