Differentially Private Data Structures under Continual Observation for Histograms and Related Queries

02/22/2023
by   Monika Henzinger, et al.
0

Binary counting under continual observation is a well-studied fundamental problem in differential privacy. A natural extension is maintaining column sums, also known as histogram, over a stream of rows from {0,1}^d, and answering queries about those sums, e.g. the maximum column sum or the median, while satisfying differential privacy. Jain et al. (2021) showed that computing the maximum column sum under continual observation while satisfying event-level differential privacy requires an error either polynomial in the dimension d or the stream length T. On the other hand, no o(dlog^2 T) upper bound for ϵ-differential privacy or o(√(d)log^3/2 T) upper bound for (ϵ,δ)-differential privacy are known. In this work, we give new parameterized upper bounds for maintaining histogram, maximum column sum, quantiles of the column sums, and any set of at most d low-sensitivity, monotone, real valued queries on the column sums. Our solutions achieve an error of approximately O(dlog^2 c_max+log T) for ϵ-differential privacy and approximately O(√(d)log^3/2c_max+log T) for (ϵ,δ)-differential privacy, where c_max is the maximum value that the queries we want to answer can assume on the given data set. Furthermore, we show that such an improvement is not possible for a slightly expanded notion of neighboring streams by giving a lower bound of Ω(d log T). This explains why our improvement cannot be achieved with the existing mechanisms for differentially private histograms, as they remain differentially private even for this expanded notion of neighboring streams.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset