Differentially Private Enhanced Permissioned Blockchain for Private Data Sharing in Industrial IoT
The integration of permissioned blockchain such as Hyperledger fabric (HF) and Industrial internet of Things (IIoT) has opened new opportunities for interdependent supply chain partners to improve their performance through data sharing and coordination. The multichannel mechanism, private data collection and querying mechanism of HF enable private data sharing, transparency, traceability, and verification across the supply chain. However, the existing querying mechanism of HF needs further improvement for statistical data sharing because the query is evaluated on the original data recorded on the ledger. As a result, it gives rise to privacy issues such as leak of business secrets, tracking of resources and assets, and disclose of personal information. Therefore, we solve this problem by proposing a differentially private enhanced permissioned blockchain for private data sharing in the context of supply chain in IIoT which is known as (EDH-IIoT). We propose an algorithms to efficiently utilize the ϵ through the reuse of the privacy budget for the repeated queries. Furthermore, the reuse and tracking of ϵ enable the data owner to get ensure that ϵ does not exceed the threshold which is the maximum privacy budget (ϵ_t). Finally, we model two privacy attacks namely linking attack and composition attack to evaluate and compare privacy preservation, and the efficiency of reuse of ϵ with the default chaincode of HF and traditional differential privacy model, respectively. The results confirm that EDH-IIoT obtains an accuracy of 97 ϵ_t = 1, and a reduction of 35.96
READ FULL TEXT