DiffQue: Estimating Relative Difficulty of Questions in Community Question Answering Services

06/01/2019
by   Deepak Thukral, et al.
0

Automatic estimation of relative difficulty of a pair of questions is an important and challenging problem in community question answering (CQA) services. There are limited studies which addressed this problem. Past studies mostly leveraged expertise of users answering the questions and barely considered other properties of CQA services such as metadata of users and posts, temporal information and textual content. In this paper, we propose DiffQue, a novel system that maps this problem to a network-aided edge directionality prediction problem. DiffQue starts by constructing a novel network structure that captures different notions of difficulties among a pair of questions. It then measures the relative difficulty of two questions by predicting the direction of a (virtual) edge connecting these two questions in the network. It leverages features extracted from the network structure, metadata of users/posts and textual description of questions and answers. Experiments on datasets obtained from two CQA sites (further divided into four datasets) with human annotated ground-truth show that DiffQue outperforms four state-of-the-art methods by a significant margin (28.77 28.72 (i) DiffQue appropriately responds to the training noise, (ii) DiffQue is capable of adapting multiple domains (CQA datasets), and (iii) DiffQue can efficiently handle 'cold start' problem which may arise due to the lack of information for newly posted questions or newly arrived users.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset