Dikaios: Privacy Auditing of Algorithmic Fairness via Attribute Inference Attacks

02/04/2022
by   Jan Aalmoes, et al.
0

Machine learning (ML) models have been deployed for high-stakes applications. Due to class imbalance in the sensitive attribute observed in the datasets, ML models are unfair on minority subgroups identified by a sensitive attribute, such as race and sex. In-processing fairness algorithms ensure model predictions are independent of sensitive attribute. Furthermore, ML models are vulnerable to attribute inference attacks where an adversary can identify the values of sensitive attribute by exploiting their distinguishable model predictions. Despite privacy and fairness being important pillars of trustworthy ML, the privacy risk introduced by fairness algorithms with respect to attribute leakage has not been studied. We identify attribute inference attacks as an effective measure for auditing blackbox fairness algorithms to enable model builder to account for privacy and fairness in the model design. We proposed Dikaios, a privacy auditing tool for fairness algorithms for model builders which leveraged a new effective attribute inference attack that account for the class imbalance in sensitive attributes through an adaptive prediction threshold. We evaluated Dikaios to perform a privacy audit of two in-processing fairness algorithms over five datasets. We show that our attribute inference attacks with adaptive prediction threshold significantly outperform prior attacks. We highlighted the limitations of in-processing fairness algorithms to ensure indistinguishable predictions across different values of sensitive attributes. Indeed, the attribute privacy risk of these in-processing fairness schemes is highly variable according to the proportion of the sensitive attributes in the dataset. This unpredictable effect of fairness mechanisms on the attribute privacy risk is an important limitation on their utilization which has to be accounted by the model builder.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset