Dimensionality Reduction Ensembles

10/11/2017
by   Colleen M. Farrelly, et al.
0

Ensemble learning has had many successes in supervised learning, but it has been rare in unsupervised learning and dimensionality reduction. This study explores dimensionality reduction ensembles, using principal component analysis and manifold learning techniques to capture linear, nonlinear, local, and global features in the original dataset. Dimensionality reduction ensembles are tested first on simulation data and then on two real medical datasets using random forest classifiers; results suggest the efficacy of this approach, with accuracies approaching that of the full dataset. Limitations include computational cost of some algorithms with strong performance, which may be ameliorated through distributed computing and the development of more efficient versions of these algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset