Discovering Process Models from Uncertain Event Data
Modern information systems are able to collect event data in the form of event logs. Process mining techniques allow to discover a model from event data, to check the conformance of an event log against a reference model, and to perform further process-centric analyses. In this paper, we consider uncertain event logs, where data is recorded together with explicit uncertainty information. We describe a technique to discover a directly-follows graph from such event data which retains information about the uncertainty in the process. We then present experimental results of performing inductive mining over the directly-follows graph to obtain models representing the certain and uncertain part of the process.
READ FULL TEXT