Distributed Online Learning of Event Definitions

05/05/2017
by   Nikos Katzouris, et al.
0

Logic-based event recognition systems infer occurrences of events in time using a set of event definitions in the form of first-order rules. The Event Calculus is a temporal logic that has been used as a basis in event recognition applications, providing among others, direct connections to machine learning, via Inductive Logic Programming (ILP). OLED is a recently proposed ILP system that learns event definitions in the form of Event Calculus theories, in a single pass over a data stream. In this work we present a version of OLED that allows for distributed, online learning. We evaluate our approach on a benchmark activity recognition dataset and show that we can significantly reduce training times, exchanging minimal information between processing nodes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset