Distributed Strategy Selection: A Submodular Set Function Maximization Approach

07/29/2021
by   Navid Rezazadeh, et al.
0

Constrained submodular set function maximization problems often appear in multi-agent decision-making problems with a discrete feasible set. A prominent example is the problem of multi-agent mobile sensor placement over a discrete domain. Submodular set function optimization problems, however, are known to be NP-hard. This paper considers a class of submodular optimization problems that consist of maximization of a monotone and submodular set function subject to a uniform matroid constraint over a group of networked agents that communicate over a connected undirected graph. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. We propose a distributed suboptimal polynomial-time algorithm that enables each agent to obtain its respective strategy via local interactions with its neighboring agents. Our solution is a fully distributed gradient-based algorithm using the submodular set functions' multilinear extension followed by a distributed stochastic Pipage rounding procedure. This algorithm results in a strategy set that when the team utility function is evaluated at worst case, the utility function value is in 1/c(1-e^(-c)-O(1/T)) of the optimal solution with c to be the curvature of the submodular function. An example demonstrates our results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro