Divide-and-Conquer Reinforcement Learning

11/27/2017
by   Dibya Ghosh, et al.
0

Standard model-free deep reinforcement learning (RL) algorithms sample a new initial state for each trial, allowing them to optimize policies that can perform well even in highly stochastic environments. However, problems that exhibit considerable initial state variation typically produce high-variance gradient estimates for model-free RL, making direct policy or value function optimization challenging. In this paper, we develop a novel algorithm that instead optimizes an ensemble of policies, each on a different "slice" of the initial state space, and gradually unifies them into a single policy that can succeed on the whole state space. This approach, which we term divide-and-conquer RL, is able to solve complex tasks where conventional deep RL methods are ineffective. Our results show that divide-and-conquer RL greatly outperforms conventional policy gradient methods on challenging grasping, manipulation, and locomotion tasks, and exceeds the performance of a variety of prior methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset