Doeblin Coefficients and Related Measures
Doeblin coefficients are a classical tool for analyzing the ergodicity and exponential convergence rates of Markov chains. Propelled by recent works on contraction coefficients of strong data processing inequalities, we investigate whether Doeblin coefficients also exhibit some of the notable properties of canonical contraction coefficients. In this paper, we present several new structural and geometric properties of Doeblin coefficients. Specifically, we show that Doeblin coefficients form a multi-way divergence, exhibit tensorization, and possess an extremal trace characterization. We then show that they also have extremal coupling and simultaneously maximal coupling characterizations. By leveraging these characterizations, we demonstrate that Doeblin coefficients act as a nice generalization of the well-known total variation (TV) distance to a multi-way divergence, enabling us to measure the "distance" between multiple distributions rather than just two. We then prove that Doeblin coefficients exhibit contraction properties over Bayesian networks similar to other canonical contraction coefficients. We additionally derive some other results and discuss an application of Doeblin coefficients to distribution fusion. Finally, in a complementary vein, we introduce and discuss three new quantities: max-Doeblin coefficient, max-DeGroot distance, and min-DeGroot distance. The max-Doeblin coefficient shares a connection with the concept of maximal leakage in information security; we explore its properties and provide a coupling characterization. On the other hand, the max-DeGroot and min-DeGroot measures extend the concept of DeGroot distance to multiple distributions.
READ FULL TEXT