Does entity abstraction help generative Transformers reason?

01/05/2022
by   Nicolas Gontier, et al.
14

Pre-trained language models (LMs) often struggle to reason logically or generalize in a compositional fashion. Recent work suggests that incorporating external entity knowledge can improve LMs' abilities to reason and generalize. However, the effect of explicitly providing entity abstraction remains unclear, especially with recent studies suggesting that pre-trained LMs already encode some of that knowledge in their parameters. We study the utility of incorporating entity type abstractions into pre-trained Transformers and test these methods on four NLP tasks requiring different forms of logical reasoning: (1) compositional language understanding with text-based relational reasoning (CLUTRR), (2) abductive reasoning (ProofWriter), (3) multi-hop question answering (HotpotQA), and (4) conversational question answering (CoQA). We propose and empirically explore three ways to add such abstraction: (i) as additional input embeddings, (ii) as a separate sequence to encode, and (iii) as an auxiliary prediction task for the model. Overall, our analysis demonstrates that models with abstract entity knowledge performs better than without it. However, our experiments also show that the benefits strongly depend on the technique used and the task at hand. The best abstraction aware models achieved an overall accuracy of 88.8 model achieving 62.3 addition, abstraction-aware models showed improved compositional generalization in both interpolation and extrapolation settings. However, for HotpotQA and CoQA, we find that F1 scores improve by only 0.5 suggest that the benefit of explicit abstraction is significant in formally defined logical reasoning settings requiring many reasoning hops, but point to the notion that it is less beneficial for NLP tasks having less formal logical structure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset