Doubly Exponential Solution for Randomized Load Balancing Models with General Service Times
In this paper, we provide a novel and simple approach to study the supermarket model with general service times. This approach is based on the supplementary variable method used in analyzing stochastic models extensively. We organize an infinite-size system of integral-differential equations by means of the density dependent jump Markov process, and obtain a close-form solution: doubly exponential structure, for the fixed point satisfying the system of nonlinear equations, which is always a key in the study of supermarket models. The fixed point is decomposited into two groups of information under a product form: the arrival information and the service information. based on this, we indicate two important observations: the fixed point for the supermarket model is different from the tail of stationary queue length distribution for the ordinary M/G/1 queue, and the doubly exponential solution to the fixed point can extensively exist even if the service time distribution is heavy-tailed. Furthermore, we analyze the exponential convergence of the current location of the supermarket model to its fixed point, and study the Lipschitz condition in the Kurtz Theorem under general service times. Based on these analysis, one can gain a new understanding how workload probing can help in load balancing jobs with general service times such as heavy-tailed service.
READ FULL TEXT