Drinking from a Firehose: Continual Learning with Web-scale Natural Language
Continual learning systems will interact with humans, with each other, and with the physical world through time – and continue to learn and adapt as they do. Such systems have typically been evaluated in artificial settings: for example, classifying randomly permuted images. A key limitation of these settings is the unnatural construct of discrete, sharply demarcated tasks that are solved in sequence. In this paper, we study a natural setting for continual learning on a massive scale. We introduce the problem of personalized online language learning (POLL), which involves fitting personalized language models to a population of users that evolves over time. To facilitate research on POLL, we collect massive datasets of Twitter posts. These datasets, Firehose10M and Firehose100M, comprise 100 million tweets, posted by one million users over six years. Enabled by the Firehose datasets, we present a rigorous evaluation of continual learning algorithms on an unprecedented scale. Based on this analysis, we develop a simple algorithm for continual gradient descent (ConGraD) that outperforms prior continual learning methods on the Firehose datasets as well as earlier benchmarks. Collectively, the POLL problem setting, the Firehose datasets, and the ConGraD algorithm enable reproducible research on web-scale continual learning.
READ FULL TEXT