DTATG: An Automatic Title Generator based on Dependency Trees

10/01/2017
by   Liqun Shao, et al.
0

We study automatic title generation for a given block of text and present a method called DTATG to generate titles. DTATG first extracts a small number of central sentences that convey the main meanings of the text and are in a suitable structure for conversion into a title. DTATG then constructs a dependency tree for each of these sentences and removes certain branches using a Dependency Tree Compression Model we devise. We also devise a title test to determine if a sentence can be used as a title. If a trimmed sentence passes the title test, then it becomes a title candidate. DTATG selects the title candidate with the highest ranking score as the final title. Our experiments showed that DTATG can generate adequate titles. We also showed that DTATG-generated titles have higher F1 scores than those generated by the previous methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro