Dual Hierarchical Attention Networks for Bi-typed Heterogeneous Graph Learning
Bi-typed heterogeneous graphs are applied in many real-world scenarios. However, previous heterogeneous graph learning studies usually ignore the complex interactions among the bi-typed entities in such heterogeneous graphs. To address this issue, in this paper we propose a novel Dual Hierarchical Attention Networks (DHAN) to learn comprehensive node representations on the bi-typed heterogeneous graphs with intra-class and inter-class hierarchical attention networks. Specifically, the intra-class attention aims to learn the node representations from its same type of neighbors, while inter-class attention is able to aggregate node representations from its different types of neighbors. Hence, the dual attention operations enable DHAN to sufficiently leverage not only the node intra-class neighboring information but also the inter-class neighboring information in the bi-typed heterogeneous graph. Experimental results on various tasks against the state-of-the-arts sufficiently confirm the capability of DHAN in learning node comprehensive representations on the bi-typed heterogeneous
READ FULL TEXT