Dynamic Portfolio Optimization with Real Datasets Using Quantum Processors and Quantum-Inspired Tensor Networks

06/30/2020
by   Samuel Mugel, et al.
0

In this paper we tackle the problem of dynamic portfolio optimization, i.e., determining the optimal trading trajectory for an investment portfolio of assets over a period of time, taking into account transaction costs and other possible constraints. This problem, well-known to be NP-Hard, is central to quantitative finance. After a detailed introduction to the problem, we implement a number of quantum and quantum-inspired algorithms on different hardware platforms to solve its discrete formulation using real data from daily prices over 8 years of 52 assets, and do a detailed comparison of the obtained Sharpe ratios, profits and computing times. In particular, we implement classical solvers (Gekko, exhaustive), D-Wave Hybrid quantum annealing, two different approaches based on Variational Quantum Eigensolvers on IBM-Q (one of them brand-new and tailored to the problem), and for the first time in this context also a quantum-inspired optimizer based on Tensor Networks. In order to fit the data into each specific hardware platform, we also consider doing a preprocessing based on clustering of assets. From our comparison, we conclude that D-Wave Hybrid and Tensor Networks are able to handle the largest systems, where we do calculations up to 1272 fully-connected qubits for demonstrative purposes. Finally, we also discuss how to mathematically implement other possible real-life constraints, as well as several ideas to further improve the performance of the studied methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset