Dynamic Texture Synthesis by Incorporating Long-range Spatial and Temporal Correlations

04/13/2021
by   Kaitai Zhang, et al.
0

The main challenge of dynamic texture synthesis lies in how to maintain spatial and temporal consistency in synthesized videos. The major drawback of existing dynamic texture synthesis models comes from poor treatment of the long-range texture correlation and motion information. To address this problem, we incorporate a new loss term, called the Shifted Gram loss, to capture the structural and long-range correlation of the reference texture video. Furthermore, we introduce a frame sampling strategy to exploit long-period motion across multiple frames. With these two new techniques, the application scope of existing texture synthesis models can be extended. That is, they can synthesize not only homogeneous but also structured dynamic texture patterns. Thorough experimental results are provided to demonstrate that our proposed dynamic texture synthesis model offers state-of-the-art visual performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset