Easy Uncertainty Quantification (EasyUQ): Generating predictive distributions from single-valued model output
How can we quantify uncertainty if our favorite computational tool - be it a numerical, a statistical, or a machine learning approach, or just any computer model - provides single-valued output only? In this article, we introduce the Easy Uncertainty Quantification (EasyUQ) technique, which transforms real-valued model output into calibrated statistical distributions, based solely on training data of model output-outcome pairs, without any need to access model input. In its basic form, EasyUQ is a special case of the recently introduced Isotonic Distributional Regression (IDR) technique that leverages the pool-adjacent-violators algorithm for nonparametric isotonic regression. EasyUQ yields discrete predictive distributions that are calibrated and optimal in finite samples, subject to stochastic monotonicity. The workflow is fully automated, without any need for tuning. The Smooth EasyUQ approach supplements IDR with kernel smoothing, to yield continuous predictive distributions that preserve key properties of the basic form, including both, stochastic monotonicity with respect to the original model output, and asymptotic consistency. For the selection of kernel parameters, we introduce multiple one-fit grid search, a computationally much less demanding approximation to leave-one-out cross-validation. We use simulation examples and the WeatherBench challenge in data-driven weather prediction to illustrate the techniques. In a study of benchmark problems from machine learning, we show how EasyUQ and Smooth EasyUQ can be integrated into the workflow of modern neural network learning and hyperparameter tuning, and find EasyUQ to be competitive with more elaborate input-based approaches.
READ FULL TEXT