Edge-Based Blur Kernel Estimation Using Sparse Representation and Self-Similarity

11/17/2018
by   Jing Yu, et al.
0

Blind image deconvolution is the problem of recovering the latent image from the only observed blurry image when the blur kernel is unknown. In this paper, we propose an edge-based blur kernel estimation method for blind motion deconvolution. In our previous work, we incorporate both sparse representation and self-similarity of image patches as priors into our blind deconvolution model to regularize the recovery of the latent image. Since almost any natural image has properties of sparsity and multi-scale self-similarity, we construct a sparsity regularizer and a cross-scale non-local regularizer based on our patch priors. It has been observed that our regularizers often favor sharp images over blurry ones only for image patches of the salient edges and thus we define an edge mask to locate salient edges that we want to apply our regularizers. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods even for handling of very large blurs, thanks to the use of the edge mask.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset