Effective and Efficient Dropout for Deep Convolutional Neural Networks

04/06/2019
by   Shaofeng Cai, et al.
0

Machine-learning-based data-driven applications have become ubiquitous, e.g., health-care analysis and database system optimization. Big training data and large (deep) models are crucial for good performance. Dropout has been widely used as an efficient regularization technique to prevent large models from overfitting. However, many recent works show that dropout does not bring much performance improvement for deep convolutional neural networks (CNNs), a popular deep learning model for data-driven applications. In this paper, we formulate existing dropout methods for CNNs under the same analysis framework to investigate the failures. We attribute the failure to the conflicts between the dropout and the batch normalization operation after it. Consequently, we propose to change the order of the operations, which results in new building blocks of CNNs.Extensive experiments on benchmark datasets CIFAR, SVHN and ImageNet have been conducted to compare the existing building blocks and our new building blocks with different dropout methods. The results confirm the superiority of our proposed building blocks due to the regularization and implicit model ensemble effect of dropout. In particular, we improve over state-of-the-art CNNs with significantly better performance of 3.17 1.44 respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset