Effective reinforcement learning based local search for the maximum k-plex problem

03/13/2019
by   Yan Jin, et al.
8

The maximum k-plex problem is a computationally complex problem, which emerged from graph-theoretic social network studies. This paper presents an effective hybrid local search for solving the maximum k-plex problem that combines the recently proposed breakout local search algorithm with a reinforcement learning strategy. The proposed approach includes distinguishing features such as: a unified neighborhood search based on the swapping operator, a distance-and-quality reward for actions and a new parameter control mechanism based on reinforcement learning. Extensive experiments for the maximum k-plex problem (k = 2, 3, 4, 5) on 80 benchmark instances from the second DIMACS Challenge demonstrate that the proposed approach can match the best-known results from the literature in all but four problem instances. In addition, the proposed algorithm is able to find 32 new best solutions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset