Efficient Algorithms for Rotation Averaging Problems
The rotation averaging problem is a fundamental task in computer vision applications. It is generally very difficult to solve due to the nonconvex rotation constraints. While a sufficient optimality condition is available in the literature, there is a lack of a fast convergent algorithm to achieve stationary points. In this paper, by exploring the problem structure, we first propose a block coordinate descent (BCD)-based rotation averaging algorithm with guaranteed convergence to stationary points. Afterwards, we further propose an alternative rotation averaging algorithm by applying successive upper-bound minimization (SUM) method. The SUM-based rotation averaging algorithm can be implemented in parallel and thus is more suitable for addressing large-scale rotation averaging problems. Numerical examples verify that the proposed rotation averaging algorithms have superior convergence performance as compared to the state-of-the-art algorithm. Moreover, by checking the sufficient optimality condition, we find from extensive numerical experiments that the proposed two algorithms can achieve globally optimal solutions.
READ FULL TEXT