Efficient fully dynamic elimination forests with applications to detecting long paths and cycles
We present a data structure that in a dynamic graph of treedepth at most d, which is modified over time by edge insertions and deletions, maintains an optimum-height elimination forest. The data structure achieves worst-case update time 2^ O(d^2), which matches the best known parameter dependency in the running time of a static fpt algorithm for computing the treedepth of a graph. This improves a result of Dvořák et al. [ESA 2014], who for the same problem achieved update time f(d) for some non-elementary (i.e. tower-exponential) function f. As a by-product, we improve known upper bounds on the sizes of minimal obstructions for having treedepth d from doubly-exponential in d to d^ O(d). As applications, we design new fully dynamic parameterized data structures for detecting long paths and cycles in general graphs. More precisely, for a fixed parameter k and a dynamic graph G, modified over time by edge insertions and deletions, our data structures maintain answers to the following queries: - Does G contain a simple path on k vertices? - Does G contain a simple cycle on at least k vertices? In the first case, the data structure achieves amortized update time 2^ O(k^2). In the second case, the amortized update time is 2^ O(k^4) + O(k log n). In both cases we assume access to a dictionary on the edges of G.
READ FULL TEXT