Efficient Hierarchical Exploration with Stable Subgoal Representation Learning
Goal-conditioned hierarchical reinforcement learning (HRL) serves as a successful approach to solving complex and temporally extended tasks. Recently, its success has been extended to more general settings by concurrently learning hierarchical policies and subgoal representations. However, online subgoal representation learning exacerbates the non-stationary issue of HRL and introduces challenges for exploration in high-level policy learning. In this paper, we propose a state-specific regularization that stabilizes subgoal embeddings in well-explored areas while allowing representation updates in less explored state regions. Benefiting from this stable representation, we design measures of novelty and potential for subgoals, and develop an efficient hierarchical exploration strategy that actively seeks out new promising subgoals and states. Experimental results show that our method significantly outperforms state-of-the-art baselines in continuous control tasks with sparse rewards and further demonstrate the stability and efficiency of the subgoal representation learning of this work, which promotes superior policy learning.
READ FULL TEXT