Efficient Sparse Matrix Kernels based on Adaptive Workload-Balancing and Parallel-Reduction

06/30/2021
by   Guyue Huang, et al.
0

Sparse matrix-vector and matrix-matrix multiplication (SpMV and SpMM) are fundamental in both conventional (graph analytics, scientific computing) and emerging (sparse DNN, GNN) domains. Workload-balancing and parallel-reduction are widely-used design principles for efficient SpMV. However, prior work fails to resolve how to implement and adaptively use the two principles for SpMV/MM. To overcome this obstacle, we first complete the implementation space with optimizations by filling three missing pieces in prior work, including: (1) We show that workload-balancing and parallel-reduction can be combined through a segment-reduction algorithm implemented with SIMD-shuffle primitives. (2) We show that parallel-reduction can be implemented in SpMM through loading the dense-matrix rows with vector memory operations. (3) We show that vectorized loading of sparse rows, being a part of the benefit of parallel-reduction, can co-exist with sequential-reduction in SpMM through temporally caching sparse-matrix elements in the shared memory. In terms of adaptive use, we analyze how the benefit of two principles change with two characteristics from the input data space: the diverse sparsity pattern and dense-matrix width. We find the benefit of the two principles fades along with the increased total workload, i.e. the increased dense-matrix width. We also identify, for SpMV and SpMM, different sparse-matrix features that impact workload-balancing effectiveness. Our design consistently exceeds cuSPARSE by 1.07-1.57x on different GPUs and dense matrix width, and the kernel selection rules involve 5-12 integrated into popular graph learning frameworks to accelerate GNN training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro