Elfs, trees and quantum walks
We study an elementary Markov process on graphs based on electric flow sampling (elfs). The elfs process repeatedly samples from an electric flow on a graph. While the sinks of the flow are fixed, the source is updated using the electric flow sample, and the process ends when it hits a sink vertex. We argue that this process naturally connects to many key quantities of interest. E.g., we describe a random walk coupling which implies that the elfs process has the same arrival distribution as a random walk. We also analyze the electric hitting time, which is the expected time before the process hits a sink vertex. As our main technical contribution, we show that the electric hitting time on trees is logarithmic in the graph size and weights. The initial motivation behind the elfs process is that quantum walks can sample from electric flows, and they can hence implement this process very naturally. This yields a quantum walk algorithm for sampling from the random walk arrival distribution, which has widespread applications. It complements the existing line of quantum walk search algorithms which only return an element from the sink, but yield no insight in the distribution of the returned element. By our bound on the electric hitting time on trees, the quantum walk algorithm on trees requires quadratically fewer steps than the random walk hitting time, up to polylog factors.
READ FULL TEXT