Embeddability of graphs and Weihrauch degrees
We study the complexity of the following related computational tasks concerning a fixed countable graph G: 1. Does a countable graph H provided as input have a(n induced) subgraph isomorphic to G? 2. Given a countable graph H that has a(n induced) subgraph isomorphic to G, find such a subgraph. The framework for our investigations is given by effective Wadge reducibility and by Weihrauch reducibility. Our work follows on "Reverse mathematics and Weihrauch analysis motivated by finite complexity theory" (Computability, 2021) by BeMent, Hirst and Wallace, and we answer several of their open questions.
READ FULL TEXT