Embedding and Beamforming: All-neural Causal Beamformer for Multichannel Speech Enhancement

09/01/2021
by   Andong Li, et al.
0

The spatial covariance matrix has been considered to be significant for beamformers. Standing upon the intersection of traditional beamformers and deep neural networks, we propose a causal neural beamformer paradigm called Embedding and Beamforming, and two core modules are designed accordingly, namely EM and BM. For EM, instead of estimating spatial covariance matrix explicitly, the 3-D embedding tensor is learned with the network, where both spectral and spatial discriminative information can be represented. For BM, a network is directly leveraged to derive the beamforming weights so as to implement filter-and-sum operation. To further improve the speech quality, a post-processing module is introduced to further suppress the residual noise. Based on the DNS-Challenge dataset, we conduct the experiments for multichannel speech enhancement and the results show that the proposed system outperforms previous advanced baselines by a large margin in multiple evaluation metrics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset